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The Common Model of Cognition (CMC) outlines common 
key insights into the structure, function and connectivity of 
minds across all fields concerned with the study of the mind [1]. 
Although the CMC has strong support from a theoretical point 
of view, there has been little investigation into its empirical 
validity. Previous empirical evidence found that the CMC 
provided a better architecture to account for human fMRI data 
on four different tasks than alternative models, but had 
approximately 25 participants per task. Therefore, a large scale 
investigation of the CMC is needed to further validate the 
model, and the Human Connectome Project (HCP) provides 
an ideal data repository for this. 

The goal of this project is to investigate how the CMC can 
be refined and how the CMC can inform brain 
architecture, using Dynamic Casual Modeling on a subset 
of Human Connectome data. 
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To refine and improve the current CMC (see center model), we 
created a family of CMC models (see models above). We also 
created a set of alternative models (see models below), to test 
and validate the revised version of the CMC. Each model has 
five different modules to provide a system with primitives to 
gather information, store it, update it, and act upon it. Arrows 
indicate direction of connections. Curvy lines indicate 
modulatory connections. 

Datasets and Tasks:
Participants - 172 participants, aged 22-35, from the “S1200” 
(July 21, 2017) release of the HCP Young Adult dataset. 
Imaging Parameters - fMRI images were acquired from Siemens 
3T scanners with a multiband factor of 8x with TR = 720ms, 
TE = 33.1ms, and FA = 52◦, and an echo spacing of 0.58ms. 
Each functional image consisted of 72 2-mm thick oblique slices 
with had an in-plane resolution of 104×90 voxels and a field of 
view of 208×180mm, with 2×2×2mm isomorphic voxels. 
Relational Task - Participants viewed two pairs of objects, and 
had to first determine how the top pair differed, and then 
determine if the bottom pair differed in the same way. The 
possible range of objects included six different 
shapes and six different possible textures, thus 
participants had to determine if a pair of 
objects differed by its shape or texture. 
In the control condition, participants 
were shown two objects at the top, 
one at the bottom and a word in 
the middle (either “shape” or 
“texture”). Participants had to 
determine if the object on the 
bottom matched one of the top
two objects in the dimension 
indicated by the word in the 
middle. [3]
Working Memory Task - An 
N-back task using faces, places, 
tools and body parts as the four 
categories of objects. The 2-back task 
asked participants to respond when 
the current object shown was the same 
as the one shown two objects back. The 
0-back task presented a target object at the 
beginning and asked participants to respond when 
the current object shown was the same as the target 
object. [3]

DCM Procedures:
Each of the five components of the CMC was identified with a 
single Volume of Interest (VOI). The location of each VOI was 
established by identifying the highest peak of functional activity 
during the task. The location of each VOI was allowed to vary 
from task to task within each participant. Each VOI included 
only active voxels within an 8-mm sphere. We chose Random-
Effects analysis for Bayesian model comparison, because we 
suspected that the two tasks stress different parts of the CMC 
architecture. We first compared the models within the CMC 
model family using Bayesian prediction. We then compared the 
model that performed the best of all CMC family models to the 
alternative models.
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To compare the CMC family models across the 
two tasks, we used a group-level Bayesian model 

selection algorithm. The graph above shows 
the results from this model comparison. 

Across both tasks the Mixed variant of 
the CMC best explained the human 

neuroimaging data, with an 
expected probability of 57% 

(compared to 25% and 18% for 
the Direct and Modulatory 

models). These results suggest 
that the CMC’s Procedural 

module should include both 
direct and modulatory 

connections to Working 
Memory.

Given that the Mixed CMC 
performed the best of the CMC 

family, we compared the Mixed CMC 
to the alternative models. The graph 

below shows the results from this model 
comparison, which is based on the exceedance 

probability of the model matching the data. 
Again, the Mixed CMC model outperformed the 

other two, with an expected probability of 65%. 
Therefore, overall the Mixed CMC performed 

the best of all the models we analyzed. 

One version of the CMC, what we call the Mixed CMC, is a 
reasonable model for a large spread of human cognitive data. 
This model likely performed well because it included the two 
possible connections between Procedural Memory and Working 
Memory. By including more connections, there are more ways 
for these two important high level modules to exchange and 
modify information. These results further validate the CMC as 
a common model to explain minds, with the understanding 
that the human mind must be at least one example of an 
intelligent mind. 

The results also indirectly suggest how the CMC can implement 
attention. The capacity of the modulatory variant to fit human 
data from attention-based tasks [2] suggests that modulatory 
connections from the Procedural module could provide the 
necessary computational mechanisms to account for attention 
in the human data. 

The results also provide a better understanding of how 
information is shared in the brain. The brain likely does not 
use a strictly bottom up approach to information exchange, 
nor a central director, but rather a more distributed 
approach. 

Future work should look to test the CMC with more tasks, 
especially resting state data, as it may provide a better 
understanding of the “pure” or native architecture of the 
human mind.
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