

CENTER for NEUROTECHNOLOGY

a National Science Foundation Engineering Research Center

CENTER for **NEUROTECHNOLOGY**

a National Science Foundation Engineering Research Center

AUGUST 27, 2020

Transferring generalized neural decoders across participants and recording modalities

Zoe Steine-Hanson

PhD Student Computer Science and Engineering zsteineh@uw.edu

CENTER for **NEUROTECHNOLOGY**

a National Science Foundation Engineering Research Center

Brunton Lab

GRIDlab

Harborview staff

Alfred P. Sloan FOUNDATION

Hochberg et al. 2012

he > didn't > want > to > rub > salt > into > her > wounds-

3 days of training data

Willett et al. 2020

Problem

Neural training data is limited and obtaining it can be time-consuming

Solution

Train a decoder on data pooled across many participants, then fine-tune

Requires generalized decoders

Decoders robust to cross-participant differences

So what differs from one person to the next?

1. Specific frequency bands

UН

So what differs from one person to the next?

1. Specific frequency bands

So what differs from one person to the next?

- 1. Specific frequency bands
- 2. Electrode placement

Previous research – CNNs for decoding

Model from Lawhern et al. JNE 2018

EEGNet

2 problems to solve

2 problems to solve

Handle inconsistent electrode placements

Time domain - Hilbert Transform

- Hilbert transform is not easily interpreted for broadband signals
- So, need to **bandpass filter the data** first (Filter-Hilbert method)

AMANINA MANYA MANY

Uh

Add Hilbert transform layer to EEGNet

2 problems to solve

Handle inconsistent electrode placements

2

Project data onto common brain regions

Final model - HTNet

Testing HTNet on real data

ECoG:

- 12 participants
- Naturalistic arm movements v. rest
- 302–1894 events each

EEG:

- 15 participants
- Cued elbow
 flexion v. rest
- 120 events
 each

Experimental design

- 1. Tailored decoder
- Generalized decoder, same modality
- Generalized
 decoder, unseen
 modality

Train set

Test set

Validation set

HTNet best across all experiments

Fine-tuning experimental design

Fine-Tuning Does Better Than Tailored With Little Data

CENTER for **NEUROTECHNOLOGY** a National Science Foundation Engineering Research Center

